
Logische Methoden des Software Engineerings
Vertiefungsmodul 2

Combinatory Logic Synthesis (Simple Types)

Jakob Rehof & Andrej Dudenhefner
LS XIV – Software Engineering

TU Dortmund
WS 2018/19

WS 2018/19

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 1 / 18



Composition Synthesis

Function composition in Combinatory Logic

Γ ` F : τ ′ → τ Γ ` G : τ ′

Γ ` (F G) : τ
(→E)

as logical model of applicative composition of named component
interfaces (F : ρ) ∈ Γ from a repository Γ, satisfying goal τ

Inhabitation problem as foundation for automatic synthesis:
∃F. Γ ` F : τ ? Notation Γ ` ? : τ

I Does there exist a program composition F from repository Γ with
Γ ` F : τ ? Inhabitation algorithm is used to construct (synthesize) F
from Γ and τ

CLS is inherently component-oriented

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 2 / 18



Composition Synthesis

Function composition in Combinatory Logic

Γ ` F : τ ′ → τ Γ ` G : τ ′

Γ ` (F G) : τ
(→E)

as logical model of applicative composition of named component
interfaces (F : ρ) ∈ Γ from a repository Γ, satisfying goal τ

Inhabitation problem as foundation for automatic synthesis:
∃F. Γ ` F : τ ? Notation Γ ` ? : τ

I Does there exist a program composition F from repository Γ with
Γ ` F : τ ? Inhabitation algorithm is used to construct (synthesize) F
from Γ and τ

CLS is inherently component-oriented

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 2 / 18



Composition Synthesis

Function composition in Combinatory Logic

Γ ` F : τ ′ → τ Γ ` G : τ ′

Γ ` (F G) : τ
(→E)

as logical model of applicative composition of named component
interfaces (F : ρ) ∈ Γ from a repository Γ, satisfying goal τ

Inhabitation problem as foundation for automatic synthesis:
∃F. Γ ` F : τ ? Notation Γ ` ? : τ

I Does there exist a program composition F from repository Γ with
Γ ` F : τ ? Inhabitation algorithm is used to construct (synthesize) F
from Γ and τ

CLS is inherently component-oriented

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 2 / 18



Composition Synthesis

Function composition in Combinatory Logic

Γ ` F : τ ′ → τ Γ ` G : τ ′

Γ ` (F G) : τ
(→E)

as logical model of applicative composition of named component
interfaces (F : ρ) ∈ Γ from a repository Γ, satisfying goal τ

Inhabitation problem as foundation for automatic synthesis:
∃F. Γ ` F : τ ? Notation Γ ` ? : τ

I Does there exist a program composition F from repository Γ with
Γ ` F : τ ? Inhabitation algorithm is used to construct (synthesize) F
from Γ and τ

CLS is inherently component-oriented

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 2 / 18



Foundations in Combinatory Logic

Components are exposed as typed combinator symbols (F : τ),
representing component names with types as interfaces. Types will be
generalized later.

Component composition as applicative combinations (FG).
Composition will be generalized later.

However, we will first have to generalize the notion of combinatory
logic from any particular fixed base (like B = {S,K, I}) to arbitrary
finite sets of combinators.

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 3 / 18



CL vs λ-calculus

Recall that the fixed base B = {S,K, I} (even B = {S,K}) is
equivalent to λ-calculus, both untyped and in simple types.

We saw that inhabitation in λ→ and simple typed SKI-calculus is
Pspace-complete (Statman).

Proof/term enumeration, Ben-Yelles, Hindley: See [Hin08].

But a fixed base is not the right model for composition synthesis,
since repository (Γ) varies

And λ-calculus (SKI-calculus) as model is not component-oriented as
is CL

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 4 / 18



CL vs λ-calculus

Recall that the fixed base B = {S,K, I} (even B = {S,K}) is
equivalent to λ-calculus, both untyped and in simple types.

We saw that inhabitation in λ→ and simple typed SKI-calculus is
Pspace-complete (Statman).

Proof/term enumeration, Ben-Yelles, Hindley: See [Hin08].

But a fixed base is not the right model for composition synthesis,
since repository (Γ) varies

And λ-calculus (SKI-calculus) as model is not component-oriented as
is CL

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 4 / 18



Recall combinatory logic SKI

Γ, x : τ `ski x : τ
(var)

Γ `ski I : τ → τ
(I)

Γ `ski K : τ → σ → τ
(K)

Γ `ski S : (τ → σ → ρ) → (τ → σ) → τ → ρ
(S)

Γ `ski F : τ → σ Γ `ski G : τ

Γ `ski (FG) : σ
(→E)

Notice that variables x have fixed, monomorphic types, whereas combinators S,K, I
have infinitely many types (their types are schematic or polymorphic).

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 5 / 18



Combinatory logic cl(B)

Fix a typed base B, for example SKI:

S : (α→ β → γ) → (α→ β) → α→ γ
K : α→ β → α
I : α→ α

with the rules, for any given base B:

(X : τ) ∈ B, S : V → T
Γ `B X : S(τ)

(comb)

Γ, x : τ `B x : τ
(var)

Γ `B F : τ → σ Γ `B G : τ

Γ `B (FG) : σ
(→E)

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 6 / 18



Combinatory logic cl

Assuming that variables x are considered special combinator symbols with
constant types, we can assume that Γ is an arbitrary set of typed
combinator symbols and simplify the presentation to:

[S : V→ T]

Γ, X : τ `cl X : S(τ)
(var)

Γ `cl F : τ → σ Γ `cl G : τ

Γ `cl (FG) : σ
(→E)

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 7 / 18



Relativized Inhabitation

We consider the relativized inhabitation problem:
I Given Γ and τ , does there exist F such that Γ `cl F : τ?

Relativized inhabitation in simple types is much harder than
inhabitation in the fixed theory of λ→ (SKI)

I Undecidable: Linial-Post theorems, 1948 ff.

Reason: instead of considering a fixed theory (λ→, IPC) we consider
an arbitrary input theory

The CLS view: Already in simple types, relativized inhabitation
defines a Turing-complete logic programming language for component
composition

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 8 / 18



Relativized Inhabitation

We consider the relativized inhabitation problem:
I Given Γ and τ , does there exist F such that Γ `cl F : τ?

Relativized inhabitation in simple types is much harder than
inhabitation in the fixed theory of λ→ (SKI)

I Undecidable: Linial-Post theorems, 1948 ff.

Reason: instead of considering a fixed theory (λ→, IPC) we consider
an arbitrary input theory

The CLS view: Already in simple types, relativized inhabitation
defines a Turing-complete logic programming language for component
composition

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 8 / 18



Relativized Inhabitation

We consider the relativized inhabitation problem:
I Given Γ and τ , does there exist F such that Γ `cl F : τ?

Relativized inhabitation in simple types is much harder than
inhabitation in the fixed theory of λ→ (SKI)

I Undecidable: Linial-Post theorems, 1948 ff.

Reason: instead of considering a fixed theory (λ→, IPC) we consider
an arbitrary input theory

The CLS view: Already in simple types, relativized inhabitation
defines a Turing-complete logic programming language for component
composition

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 8 / 18



Relativized Inhabitation

We consider the relativized inhabitation problem:
I Given Γ and τ , does there exist F such that Γ `cl F : τ?

Relativized inhabitation in simple types is much harder than
inhabitation in the fixed theory of λ→ (SKI)

I Undecidable: Linial-Post theorems, 1948 ff.

Reason: instead of considering a fixed theory (λ→, IPC) we consider
an arbitrary input theory

The CLS view: Already in simple types, relativized inhabitation
defines a Turing-complete logic programming language for component
composition

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 8 / 18



Turing-Completeness of Simple Types!

Two-counter automaton acceptance is undecidable. Two counter
automaton A = 〈Q, q0, qF , δ〉, control states Q, inital state q0, final state
qF , counters c1, c2 ∈ N, transition relation δ given by (i = 1, 2):

q : ci := ci + 1; goto p

q : ci := ci − 1; goto p

q : if (ci = 0) then goto p else goto r

Configurations C = (q, n,m), q ∈ Q, n and m contents of counters c1
resp. c2.

Types of the form [C] = q → sn(0)→ sm(0) will represent configurations
C = (q, n,m)

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 9 / 18



Encoding of A into ΓA

Fin : qF → α→ β

q : c1 := c1 + 1; goto p:

Add1[q, p] :
(
p→ s(α)→ β

)
→

(
q → α→ β

)
.

q : c1 := c1 − 1; goto p:

Sub1[q, p] :
(
p→ α→ β

)
→

(
q → s(α)→ β

)
.

q : if (c1 = 0) then goto p else goto r:
I TstZ1[q, p] :

(
p→ 0→ β

)
→

(
q → 0→ β

)
and

I TstNZ1 [q, r] :
(
r → s(α)→ β

)
→

(
q → s(α)→ β

)
.

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 10 / 18



Reduction

Consider the two-counter automaton

A = q0 : c1 := c1 − 1; goto q1
q1 : if (c1 = 0) then goto qF else goto q0

from initial state (q0, 1, 0). Since

Fin : qF → 0→ 0
TstZ1[q1, qF] : (qF → 0→ 0)→ (q1 → 0→ 0)
Sub1[q0, q1] : (q1 → 0→ 0)→ (q0 → s(0)→ 0)

we get

ΓA ` Sub1[q0, q1] (TstZ1[q1, qF] Fin) : q0 → s(0)→ 0

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 11 / 18



Reduction

Theorem 1
Let A be a two-counter automaton with initial configuration (q0, n0,m0). A accepts if
and only if there exists a term e with ΓA ` e : q0 → sn0(0) → sm0(0).

Lemma 2
Let C and C′ be configurations in A. We have C → C′ if and only if there is a term e
with ΓA ` e : [C′] → [C].

Lemma 3
Let C be a configuration of A. C leads to acceptance in A if and only if there is a term
e with ΓA ` e : [C].

Exercise 1
Prove Theorem 1.

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 12 / 18



Types as Logic Programs for Composition

The input repository Γ is a logic program at the level of types

Each combinator type is a rule in the program

The inhabitation goal is the input goal to the program

Search for inhabitants is the execution of the program

Inhabitants are programs synthesized as solution space to the program

Broadly related (proof search as semantics of generalized logic programming):

D. Miller, G. Nadathur, F. Pfenning, A. Scedrov: Uniform Proofs as a Foundation for Logic Programming, Ann. Pure App.
Logic, 1991

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 13 / 18



“Linial-Post Spectrum”

∞ 

Ptime 

co-NP 

Pspace 

Exptime 

2Exptime 

. 

. 

. 

CPL IPL (S4) T
 R 

? 

Intermediate logics Subintuitionistic logics 

R
 

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 14 / 18



Semantic specification

Simple types are not sufficient to specify composition (even though they
are Turing-complete under relativized inhabitation).

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 15 / 18



Intersection types

Definition 4 (Intersection types)
Let V denote a denumerable set of type variables, ranged over by metavariables
α, β, γ, . . ., and let b range over a set B of type constants. The set T∩ of intersection
types, ranged over by τ, σ, ρ, . . ., is defined inductively by:

α ∈ V ⇒ α ∈ T∩

b ∈ B ⇒ b ∈ T∩

τ ∈ T∩, σ ∈ T∩ ⇒ τ → σ ∈ T∩

τ ∈ T∩, σ ∈ T∩ ⇒ τ ∩ σ ∈ T∩

Intersection types are considered modulo associativity, commutativity and idempotence
of intersection: τ ∩ (σ ∩ ρ) = (τ ∩ σ) ∩ ρ, τ ∩ σ = σ ∩ τ, τ ∩ τ = τ .

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 16 / 18



Intersection type system λ∩

Γ, x : τ ` x : τ
(var)

Γ, x : τ `M : σ

Γ ` λx.M : τ → σ
(→I)

Γ `M : τ → σ Γ ` N : τ

Γ `MN : σ
(→E)

Γ `M : τ1 Γ `M : τ2
Γ `M : τ1 ∩ τ2

(∩I)
Γ `M : τ1 ∩ τ2

Γ `M : τi
(∩E)

Major reference for this system (a.k.a. “BCD”, Barendregt-Coppo-Dezani):

[BCDC83].

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 17 / 18



Intersection type system λ∩

A good exposition of the following fundamental result (which goes back to around 1980)
can be found in [Ghi96].

Lemma 5 (Subject expansion)
Suppose M →β N by contracting the redex occurrence (λx.P )Q in M . If Γ `M : σ
and Q is typable in the same context Γ, then Γ ` N : σ.

Theorem 6 (Fundamental theorem for λ∩)
A term M is typable in system λ∩, if and only if, M is strongly normalizing.

Corollary 7 (Undecidability)
Typability in λ∩ is undecidable.

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 18 / 18



H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini.
A Filter Lambda Model and the Completeness of Type Assignment.
Journal of Symbolic Logic, 48(4):931–940, 1983.

S. Ghilezan.
Strong Normalization and Typability with Intersection Types.
Notre Dame Journal of Formal Logic, 37(1):44–52, 1996.

J. Roger Hindley.
Basic Simple Type Theory.
Cambridge Tracts in Theoretical Computer Science, vol. 42,
Cambridge University Press, 2008.

J. Rehof (TU Dortmund) LMSE 2 WS 2018/19 18 / 18


