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Inhabitation

Whenever `M : τ , we say that M is an inhabitant in (or, of) τ .

The inhabitation problem is concerned with the existence of
inhabitants in a given type: Given a type, is there a term having the
type?

Notice that this problem is dual to the typability problem: Given a
term, does it have a type?
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Curry-Howard isomorphism

Γ, x :τ ` x :τ
(var)

Γ, x :τ `M :σ

Γ ` λx.M :τ → σ
(→I)

Γ `M :τ → σ Γ ` N :τ

Γ `MN :σ
(→E)
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Curry-Howard isomorphism

Γ, τ ` τ (hyp)

Γ, τ ` σ
Γ ` τ → σ

(DT)

Γ ` τ → σ Γ ` τ
Γ ` σ (MP)
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Inhabitation Problem

The inhabitation problem is the following decision problem:

Definition 1 (Inhabitation problem)

Given Γ and τ , does there exist M such that Γ `M : τ?

Remark 1
Notice that the inhabitation problem is equivalent to the following
restricted problem:

Given Γ and τ , does there exist a normal form N such that
Γ ` N : τ?

Remark 2
Notice that inhabitation is equivalent to provability in implicational
intuitionistic propositional logic.
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Alternating Turing machines (ATM)

An alternating Turing machine is a tuple M = (Σ, Q, q0, qa, qr,∆). The set of states
Q = Q∃ ] Q∀ is partitioned into a set Q∃ of existential states and a set Q∀ of universal
states. There is an initial state q0 ∈ Q, an accepting state qa ∈ Q∀, and a rejecting
state qr ∈ Q∃. We take Σ = {0, 1, }, where is the blank symbol (used to initialize the
tape but not written by the machine).

The transition relation ∆ satisfies

∆ ⊆ Σ×Q× Σ×Q× {l,r},

where h ∈ {l,r} are the moves of the machine head (left and right). For b ∈ Σ and
q ∈ Q, we write ∆(b, q) = {(c, p, h) | (b, q, c, p, h) ∈ ∆}. We assume
∆(b, qa) = ∆(b, qr) = ∅, for all b ∈ Σ, and ∆(b, q) 6= ∅ for q ∈ Q \ {qa, qr}.

J. Rehof (TU Dortmund) LMSE WS 2018/19 13 / 30



Alternating Turing machines (ATM)

A configuration C of M is a word wqw′ with q ∈ Q and w,w′ ∈ Σ∗. The successor
relation C ⇒ C′ on configurations is defined as usual, according to ∆. We classify a
configuration wqw′ as existential , universal , accepting etc., according to q.

The notion of eventually accepting configuration is defined by induction (i.e., the set of
all eventually accepting configurations is the smallest set satisfying the following closure
conditions):

An accepting configuration is eventually accepting.

If C is existential and some successor of C is eventually accepting then so is C.

If C is universal and all successors of C are eventually accepting then so is C.
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Alternating Turing machines (ATM)

We use the notation for instruction sequences starting from existential states

choose x ∈ A

and instruction sequences starting from universal states

forall (i = 1 . . . k)Si

A command of the form choose x ∈ A branches from an existential state to successor
states in which x gets assigned distinct elements of A. A command of the form
forall (i = 1 . . . k)Si branches from a universal state to successor states from which
each instruction sequence Si is executed.
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Alternating complexity

Some alternating complexity classes:

aptime :=
⋃
k>0 atime(nk)

apspace :=
⋃
k>0 aspace(nk)

aexptime :=
⋃
k>0 atime(kn)

Theorem 2 (Chandra, Kozen, Stockmeyer 1981)

aptime = pspace

apspace = exptime

aexptime = expspace
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Inhabitation in λ→ is Pspace-complete

We will give a detailed proof of Statman’s Theorem: inhabitation in λ→ is
Pspace-complete. This result was first proven in [Sta79] (using, among
other things, results of Ladner [Lad77]).

Our proof follows [Urz97] (see also [SU06]) where a syntactic approach
was used, and where alternation is used to simplify the proof.
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Inhabitation in λ→: upper bound

Notice that every type τ of λ→ can be written on the form τ ≡ τ1 → · · · τn → a, n ≥ 0,
where a is an atom (either a type variable or a type constant).

Notice that every application context can be written on the form xP1 · · ·Pn for some
maximal n ≥ 0.

An explicitly typed λ-term M is in η-long normal form if it is a β-normal form and every
maximal application in M has the form xτ1→···→τn→aP τ11 · · ·P τnn . In other words, in
such terms applications are fully applied according to the type of the operator.

Notice that every typed β-normal form of type τ can be converted into η-long normal
form: any subterm occurrence of a maximal application Qσ→ρ can be converted into
λx : σ.Qx where x 6∈ FV(Q).

Set Γ � (x : τ) = Γ, if there exists y ∈ Dm(Γ) with Γ(y) = τ , and otherwise
Γ � (x : τ) = Γ ∪ {(x : τ)}.
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Inhabitation in λ→: upper bound

Algorithm INH(λ→)

Input : Γ, τ

loop :
1 if (τ ≡ a)
2 then
3 choose (x : σ1 → · · · → σn → a) ∈ Γ;
4 if (n = 0) then accept;
5 else
6 forall (i = 1 . . . n)
7 τ := σi;
8 goto loop;
9 else if (τ ≡ σ → ρ)
10 then
11 Γ := Γ � (y : σ) where y is fresh;
12 τ := ρ;
13 goto loop;
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Inhabitation in λ→: upper bound

Proposition 1
Inhabitation in λ→ is in pspace.

Proof.
By algorithm INH(λ→). Clearly, the algorithm performs exhaustive search for η-long
normal form inhabitants. The algorithm decides inhabitation in λ→ in polynomial space.
For consider configurations (Γ, τ) arising during an entire run of the algorithm on input
(Γ0, τ0). Notice that Γ and τ always only contain types that are subtrees of types
present in the previous values of Γ and τ (line 7 and line 11). Since a tree of size m has
m distinct subtrees, the set of distinct configurations (Γ, τ) can be bounded by n2,
where n is the size of the input. Hence, the algorithm shows that the problem is in
aptime, which is pspace by Theorem 2.
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Inhabitation in λ→: lower bound

Reduction from provability of quantified boolean fomulae φ, χ, ψ:

φ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀p.φ | ∃p.φ

We can assume w.l.o.g. that negation is only applied to propositional variables p in φ,
that all bound variables are distinct and that no variable occurs both free and bound.
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Inhabitation in λ→: lower bound

Given formula φ, construct type environment Γφ by induction on φ:

For each propositional variable p in φ, let αp and α¬p be fresh type variables. For
each subformula ψ, let αψ be fresh type variables.

If φ ≡ p, then Γφ = ∅.
If φ ≡ ¬p, then Γφ = ∅.
If φ ≡ χ ∧ ψ, then Γφ = Γχ ∪ Γψ ∪ {xφ : αχ → αψ → αχ∧ψ}.
If φ ≡ χ ∨ ψ, then Γφ = Γχ ∪ Γψ ∪ {xlφ : αχ → αχ∨ψ, x

r
φ : αψ → αχ∨ψ}.

If φ ≡ ∀p.ψ, then Γφ = Γψ ∪ {xφ : (αp → αψ)→ (α¬p → αψ)→ α∀p.ψ}.
If φ ≡ ∃p.ψ, then
Γφ = Γψ ∪ {x0φ : (αp → αψ)→ α∃p.ψ, x

1
φ : (α¬p → αψ)→ α∃p.ψ}.
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Inhabitation in λ→: lower bound

A valuation v is a map from propositional variables to truth values in {0, 1}.

For a formula φ and a valuation v, let Γvφ be the extension of Γφ:

Γvφ = Γφ ∪
⋃

p∈Dm(v)

{xp : 〈α〉pv}

where 〈α〉pv = αp if v(p) = 1 and 〈α〉pv = α¬p if v(p) = 0.

A valuation of a formula φ is a valuation defined on the free variables of φ.

We write v ⊕ [p := b] for the extension of v mapping p to b ∈ {0, 1}.

We write Γ 6` τ as abbreviation for ¬∃M. Γ `M : τ .

J. Rehof (TU Dortmund) LMSE WS 2018/19 23 / 30



Inhabitation in λ→: lower bound

A valuation v is a map from propositional variables to truth values in {0, 1}.

For a formula φ and a valuation v, let Γvφ be the extension of Γφ:

Γvφ = Γφ ∪
⋃

p∈Dm(v)

{xp : 〈α〉pv}

where 〈α〉pv = αp if v(p) = 1 and 〈α〉pv = α¬p if v(p) = 0.

A valuation of a formula φ is a valuation defined on the free variables of φ.

We write v ⊕ [p := b] for the extension of v mapping p to b ∈ {0, 1}.

We write Γ 6` τ as abbreviation for ¬∃M. Γ `M : τ .

J. Rehof (TU Dortmund) LMSE WS 2018/19 23 / 30



Inhabitation in λ→: lower bound

A valuation v is a map from propositional variables to truth values in {0, 1}.

For a formula φ and a valuation v, let Γvφ be the extension of Γφ:

Γvφ = Γφ ∪
⋃

p∈Dm(v)

{xp : 〈α〉pv}

where 〈α〉pv = αp if v(p) = 1 and 〈α〉pv = α¬p if v(p) = 0.

A valuation of a formula φ is a valuation defined on the free variables of φ.

We write v ⊕ [p := b] for the extension of v mapping p to b ∈ {0, 1}.

We write Γ 6` τ as abbreviation for ¬∃M. Γ `M : τ .

J. Rehof (TU Dortmund) LMSE WS 2018/19 23 / 30



Inhabitation in λ→: lower bound

A valuation v is a map from propositional variables to truth values in {0, 1}.

For a formula φ and a valuation v, let Γvφ be the extension of Γφ:

Γvφ = Γφ ∪
⋃

p∈Dm(v)

{xp : 〈α〉pv}

where 〈α〉pv = αp if v(p) = 1 and 〈α〉pv = α¬p if v(p) = 0.

A valuation of a formula φ is a valuation defined on the free variables of φ.

We write v ⊕ [p := b] for the extension of v mapping p to b ∈ {0, 1}.

We write Γ 6` τ as abbreviation for ¬∃M. Γ `M : τ .

J. Rehof (TU Dortmund) LMSE WS 2018/19 23 / 30



Inhabitation in λ→: lower bound

A valuation v is a map from propositional variables to truth values in {0, 1}.

For a formula φ and a valuation v, let Γvφ be the extension of Γφ:

Γvφ = Γφ ∪
⋃

p∈Dm(v)

{xp : 〈α〉pv}

where 〈α〉pv = αp if v(p) = 1 and 〈α〉pv = α¬p if v(p) = 0.

A valuation of a formula φ is a valuation defined on the free variables of φ.

We write v ⊕ [p := b] for the extension of v mapping p to b ∈ {0, 1}.

We write Γ 6` τ as abbreviation for ¬∃M. Γ `M : τ .

J. Rehof (TU Dortmund) LMSE WS 2018/19 23 / 30



Inhabitation in λ→: lower bound

Assume w.l.o.g. that formulae φ have negation signs only applied to propositional
variables.

We let JφKv denote the truth value of φ under valuation v, defined by induction on φ:

JpKv = v(p)
J¬pKv = 0, if v(p) = 1, else 1
Jψ ∧ χKv = min{JψKv, JχKv}
Jψ ∨ χKv = max{JψKv, JχKv}
J∀p.ψKv = min{JψK(v ⊕ [p := 1]), JψK(v ⊕ [p := 0])}
J∃p.ψKv = max{JψK(v ⊕ [p := 1]), JψK(v ⊕ [p := 0])}
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Inhabitation in λ→: lower bound
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Inhabitation in λ→: lower bound

Lemma 3
For every formula φ and every valuation v of φ, one has

JφKv = 1 ⇔ ∃M. Γvφ `M : αφ

Proof

By induction on φ.

Case φ ≡ p. If JpKv = 1, i.e., v(p) = 1, then Γvφ = {xvp : αp}, so Γvφ ` xvp : αp. If
Γvφ `M : αp, then, by construction of Γvφ, it must be the case that Γvφ = {xvp : αp}, so
that v(p) = 1.

Case φ ≡ ¬p. Similar to previous case.
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Inhabitation in λ→: lower bound

Proof (continued)

Case φ ≡ χ ∧ ψ

If JφKv = 1, then JχKv = JψKv = 1. By induction hypothesis, Γvχ `M : αχ and
Γvψ ` N : αψ, for some M and N . It follows that Γvχ∧ψ ` xχ∧ψMN : αχ∧ψ.

If JφKv = 0, then JχKv = 0 or JψKv = 0. If JχKv = 0, then by induction hypothesis,
Γvχ 6` αχ, hence by construction of Γvφ, we must have Γvφ 6` αχ. It follows that
Γvφ 6` αχ∧ψ. The case where JψKv = 0 is analogous.
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Inhabitation in λ→: lower bound

Proof (continued)

Case φ ≡ ∀p.ψ

If JφKv = 1, then JψKv0 = JψKv1 = 1, where v0 = v⊕ [p := 0] and v1 = v⊕ [p := 1]. By
induction hypothesis, we have Γv0ψ `M : αψ and Γv1ψ ` N : αψ, for some M and N ,
which (by definitions) can also be written as Γvφ ∪ {xp : α¬p} `M : αψ and
Γvφ ∪ {xp : αp} ` N : αψ. Hence, Γvφ ` λxp : α¬p.M : α¬p → αψ and
Γvφ ` λxp : αp.N : αp → αψ. It follows that we have

Γvφ ` xφ(λxp : αp.N)(λxp : α¬p.M) : αφ
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Inhabitation in λ→: lower bound

Proof (continued)

Case φ ≡ ∀p.ψ

If JφKv = 0, then either we have JψK(v ⊕ [p := 0]) = 0 or JψK(v ⊕ [p := 1]) = 0.
Suppose that the former is the case. Then, by induction hypothesis, we have Γv0ψ 6` αψ,
where v0 = v ⊕ [p := 0]. Hence, by definitions, we have Γψ ∪ {xp : α¬p} 6` αψ. By
construction of Γvφ, it follows that we have Γvφ 6` αφ. The case where
JψK(v ⊕ [p := 1]) = 0 is analogous.
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Inhabitation in λ→: lower bound

Proof (continued)

Remaining cases are left as an exercise :)

Proposition 2
Inhabitation in λ→ is pspace-hard.

Proof.
In order to decide provability of QBF formula φ, it suffices to ask whether Γφ `? : αφ,
by Lemma 3. Since the construction of Γφ can be carried out in logarithmic space, the
proposition follows from pspace-hardness of QBF.
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Inhabitation in λ→

Theorem 4 (Statman 1979)
Inhabitation in λ→ is pspace-complete.

Proof.
By Proposition 1 and Proposition 2.
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