Logische Methoden des Software Engineerings Vertiefungsmodul 1 Inhabitation in λ^{\rightarrow}

> Jakob Rehof & Andrej Dudenhefner LS XIV – Software Engineering

TU Dortmund WS 2018/19

WS 2018/19

- Whenever $\vdash M : \tau$, we say that M is an *inhabitant* in (or, of) τ .
- The *inhabitation problem* is concerned with the existence of inhabitants in a given type: Given a type, is there a term having the type?
- Notice that this problem is dual to the typability problem: Given a term, does it have a type?

Curry-Howard isomorphism

$$\overline{\Gamma, x: \tau \vdash x: \tau}$$
(var)

$$\frac{\Gamma, x: \tau \vdash M: \sigma}{\Gamma \vdash \lambda x.M: \tau \to \sigma} (\to \mathsf{I})$$

$$\frac{\Gamma \vdash M : \tau \to \sigma \quad \Gamma \vdash N : \tau}{\Gamma \vdash MN : \sigma} (\to \mathsf{E})$$

$$\frac{1}{\Gamma,\tau\vdash\tau}(\mathsf{hyp})$$

$$\frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \to \sigma} (\mathsf{DT})$$

$$\frac{\Gamma \vdash \tau \to \sigma \quad \Gamma \vdash \tau}{\Gamma \vdash \sigma} (\mathsf{MP})$$

The *inhabitation problem* is the following decision problem: Definition 1 (Inhabitation problem)

• Given Γ and τ , does there exist M such that $\Gamma \vdash M : \tau$?

The *inhabitation problem* is the following decision problem:

Definition 1 (Inhabitation problem)

• Given Γ and τ , does there exist M such that $\Gamma \vdash M : \tau$?

Remark 1

Notice that the inhabitation problem is equivalent to the following restricted problem:

• Given Γ and τ , does there exist a normal form N such that $\Gamma \vdash N : \tau$?

The *inhabitation problem* is the following decision problem:

Definition 1 (Inhabitation problem)

• Given Γ and τ , does there exist M such that $\Gamma \vdash M : \tau$?

Remark 1

Notice that the inhabitation problem is equivalent to the following restricted problem:

• Given Γ and τ , does there exist a normal form N such that $\Gamma \vdash N : \tau$?

Remark 2

Notice that inhabitation is equivalent to provability in implicational intuitionistic propositional logic.

$$\vdash \mathop{?}:(a \rightarrow c) \rightarrow (b \rightarrow a \rightarrow c) \rightarrow a \rightarrow b \rightarrow c$$

$$\vdash ?: (a \to c) \to (b \to a \to c) \to a \to b \to c$$

$$\downarrow$$

$$\{f: a \to c, g: b \to a \to c, x: a, y: b\} \vdash \mathcal{X}: c$$

$$\vdash \ref{alpha}: (a \to c) \to (b \to a \to c) \to a \to b \to c$$

$$\vdash ?: (a \to c) \to (b \to a \to c) \to a \to b \to c$$

$$\vdash \ref{alpha}: (a \to c) \to (b \to a \to c) \to a \to b \to c$$

 $\vdash \lambda f.\lambda g.\lambda x.\lambda y.fx:\sigma$

$$\vdash ?: (a \to c) \to (b \to a \to c) \to a \to b \to c$$

 $\vdash \lambda f.\lambda g.\lambda x.\lambda y.fx:\sigma$

An alternating Turing machine is a tuple $\mathcal{M} = (\Sigma, Q, q_0, q_a, q_r, \Delta)$. The set of states $Q = Q_{\exists} \uplus Q_{\forall}$ is partitioned into a set Q_{\exists} of existential states and a set Q_{\forall} of universal states. There is an initial state $q_0 \in Q$, an accepting state $q_a \in Q_{\forall}$, and a rejecting state $q_r \in Q_{\exists}$. We take $\Sigma = \{0, 1, _\}$, where $_$ is the blank symbol (used to initialize the tape but not written by the machine).

The transition relation Δ satisfies

$$\Delta \subseteq \Sigma \times Q \times \Sigma \times Q \times \{\mathbf{L},\mathbf{R}\},$$

where $h \in \{L, R\}$ are the moves of the machine head (left and right). For $b \in \Sigma$ and $q \in Q$, we write $\Delta(b,q) = \{(c,p,h) \mid (b,q,c,p,h) \in \Delta\}$. We assume $\Delta(b,q_a) = \Delta(b,q_r) = \emptyset$, for all $b \in \Sigma$, and $\Delta(b,q) \neq \emptyset$ for $q \in Q \setminus \{q_a,q_r\}$.

A configuration C of M is a word wqw' with $q \in Q$ and $w, w' \in \Sigma^*$. The successor relation $C \Rightarrow C'$ on configurations is defined as usual, according to Δ . We classify a configuration wqw' as existential, universal, accepting etc., according to q.

The notion of *eventually accepting* configuration is defined by induction (i.e., the set of all eventually accepting configurations is the smallest set satisfying the following closure conditions):

- An accepting configuration is eventually accepting.
- If C is existential and some successor of C is eventually accepting then so is C.
- If C is universal and all successors of C are eventually accepting then so is C.

We use the notation for instruction sequences starting from existential states

```
• CHOOSE x \in A
```

and instruction sequences starting from universal states

• FORALL
$$(i = 1 \dots k) S_i$$

A command of the form CHOOSE $x \in A$ branches from an existential state to successor states in which x gets assigned distinct elements of A. A command of the form FORALL $(i = 1 \dots k) S_i$ branches from a universal state to successor states from which each instruction sequence S_i is executed.

Some alternating complexity classes:

- APTIME := $\bigcup_{k>0} \operatorname{ATIME}(n^k)$
- APSPACE := $\bigcup_{k>0} \text{ASPACE}(n^k)$
- Aexptime := $\bigcup_{k>0} \operatorname{Atime}(k^n)$

Theorem 2 (Chandra, Kozen, Stockmeyer 1981)

- APTIME = PSPACE
- APSPACE = EXPTIME
- AEXPTIME = EXPSPACE

- We will give a detailed proof of Statman's Theorem: inhabitation in λ^{\rightarrow} is PSPACE-complete. This result was first proven in [Sta79] (using, among other things, results of Ladner [Lad77]).
- Our proof follows [Urz97] (see also [SU06]) where a syntactic approach was used, and where alternation is used to simplify the proof.

Notice that every type τ of λ^{\rightarrow} can be written on the form $\tau \equiv \tau_1 \rightarrow \cdots \rightarrow \tau_n \rightarrow a$, $n \ge 0$, where a is an atom (either a type variable or a type constant).

Notice that every application context can be written on the form $xP_1 \cdots P_n$ for some maximal $n \ge 0$.

An explicitly typed λ -term M is in η -long normal form if it is a β -normal form and every maximal application in M has the form $x^{\tau_1 \to \cdots \to \tau_n \to a} P_1^{\tau_1} \cdots P_n^{\tau_n}$. In other words, in such terms applications are fully applied according to the type of the operator.

Notice that every typed β -normal form of type τ can be converted into η -long normal form: any subterm occurrence of a maximal application $Q^{\sigma \to \rho}$ can be converted into $\lambda x : \sigma.Qx$ where $x \notin FV(Q)$.

Set $\Gamma \boxplus (x : \tau) = \Gamma$, if there exists $y \in \mathsf{Dm}(\Gamma)$ with $\Gamma(y) = \tau$, and otherwise $\Gamma \boxplus (x : \tau) = \Gamma \cup \{(x : \tau)\}.$

Algorithm $\mathsf{INH}(\lambda^{\rightarrow})$

```
Input : \Gamma, \tau
       loop:
      IF (\tau \equiv a)
1
\mathbf{2}
      THEN
3
           CHOOSE (x: \sigma_1 \to \cdots \to \sigma_n \to a) \in \Gamma;
4
           IF (n = 0) THEN ACCEPT;
5
           ELSE
\mathbf{6}
               FORALL (i = 1 \dots n)
7
                    \tau := \sigma_i;
8
                    GOTO loop;
9
       ELSE IF (\tau \equiv \sigma \rightarrow \rho)
10
       THEN
11
          \Gamma := \Gamma \boxplus (y : \sigma) where y is fresh;
12 \tau := \rho;
13
           GOTO loop;
```


Proposition 1

Inhabitation in λ^{\rightarrow} is in PSPACE.

Proof.

By algorithm INH(λ^{\rightarrow}). Clearly, the algorithm performs exhaustive search for η -long normal form inhabitants. The algorithm decides inhabitation in λ^{\rightarrow} in polynomial space. For consider configurations (Γ, τ) arising during an entire run of the algorithm on input (Γ_0, τ_0). Notice that Γ and τ always only contain types that are subtrees of types present in the previous values of Γ and τ (line 7 and line 11). Since a tree of size m has m distinct subtrees, the set of distinct configurations (Γ, τ) can be bounded by n^2 , where n is the size of the input. Hence, the algorithm shows that the problem is in APTIME, which is PSPACE by Theorem 2.

Reduction from provability of quantified boolean fomulae ϕ, χ, ψ :

$$\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \forall p.\phi \mid \exists p.\phi$$

We can assume w.l.o.g. that negation is only applied to propositional variables p in ϕ , that all bound variables are distinct and that no variable occurs both free and bound.

For each propositional variable p in φ, let α_p and α_{¬p} be fresh type variables. For each subformula ψ, let α_ψ be fresh type variables.

- For each propositional variable p in φ, let α_p and α_{¬p} be fresh type variables. For each subformula ψ, let α_ψ be fresh type variables.
- If $\phi \equiv p$, then $\Gamma_{\phi} = \emptyset$.

- For each propositional variable p in φ, let α_p and α_{¬p} be fresh type variables. For each subformula ψ, let α_ψ be fresh type variables.
- If $\phi \equiv p$, then $\Gamma_{\phi} = \emptyset$.
- If $\phi \equiv \neg p$, then $\Gamma_{\phi} = \emptyset$.

- For each propositional variable p in φ, let α_p and α_{¬p} be fresh type variables. For each subformula ψ, let α_ψ be fresh type variables.
- If $\phi \equiv p$, then $\Gamma_{\phi} = \emptyset$.
- If $\phi \equiv \neg p$, then $\Gamma_{\phi} = \emptyset$.
- If $\phi \equiv \chi \land \psi$, then $\Gamma_{\phi} = \Gamma_{\chi} \cup \Gamma_{\psi} \cup \{x_{\phi} : \alpha_{\chi} \to \alpha_{\psi} \to \alpha_{\chi \land \psi}\}.$

- For each propositional variable p in φ, let α_p and α_{¬p} be fresh type variables. For each subformula ψ, let α_ψ be fresh type variables.
- If $\phi \equiv p$, then $\Gamma_{\phi} = \emptyset$.
- If $\phi \equiv \neg p$, then $\Gamma_{\phi} = \emptyset$.
- If $\phi \equiv \chi \land \psi$, then $\Gamma_{\phi} = \Gamma_{\chi} \cup \Gamma_{\psi} \cup \{x_{\phi} : \alpha_{\chi} \to \alpha_{\psi} \to \alpha_{\chi \land \psi}\}.$
- If $\phi \equiv \chi \lor \psi$, then $\Gamma_{\phi} = \Gamma_{\chi} \cup \Gamma_{\psi} \cup \{x_{\phi}^{l} : \alpha_{\chi} \to \alpha_{\chi \lor \psi}, x_{\phi}^{r} : \alpha_{\psi} \to \alpha_{\chi \lor \psi}\}.$

For each propositional variable p in φ, let α_p and α_{¬p} be fresh type variables. For each subformula ψ, let α_ψ be fresh type variables.

• If
$$\phi \equiv p$$
, then $\Gamma_{\phi} = \emptyset$.

• If
$$\phi \equiv \neg p$$
, then $\Gamma_{\phi} = \emptyset$.

• If
$$\phi \equiv \chi \land \psi$$
, then $\Gamma_{\phi} = \Gamma_{\chi} \cup \Gamma_{\psi} \cup \{x_{\phi} : \alpha_{\chi} \to \alpha_{\psi} \to \alpha_{\chi \land \psi}\}.$

• If
$$\phi \equiv \chi \lor \psi$$
, then $\Gamma_{\phi} = \Gamma_{\chi} \cup \Gamma_{\psi} \cup \{x_{\phi}^{l} : \alpha_{\chi} \to \alpha_{\chi \lor \psi}, x_{\phi}^{r} : \alpha_{\psi} \to \alpha_{\chi \lor \psi}\}.$

• If
$$\phi \equiv \forall p.\psi$$
, then $\Gamma_{\phi} = \Gamma_{\psi} \cup \{x_{\phi} : (\alpha_p \to \alpha_{\psi}) \to (\alpha_{\neg p} \to \alpha_{\psi}) \to \alpha_{\forall p.\psi}\}.$

For each propositional variable p in φ, let α_p and α_{¬p} be fresh type variables. For each subformula ψ, let α_ψ be fresh type variables.

• If
$$\phi \equiv p$$
, then $\Gamma_{\phi} = \emptyset$.

• If
$$\phi \equiv \neg p$$
, then $\Gamma_{\phi} = \emptyset$.

• If
$$\phi \equiv \chi \land \psi$$
, then $\Gamma_{\phi} = \Gamma_{\chi} \cup \Gamma_{\psi} \cup \{x_{\phi} : \alpha_{\chi} \to \alpha_{\psi} \to \alpha_{\chi \land \psi}\}.$

• If
$$\phi \equiv \chi \lor \psi$$
, then $\Gamma_{\phi} = \Gamma_{\chi} \cup \Gamma_{\psi} \cup \{x_{\phi}^{l} : \alpha_{\chi} \to \alpha_{\chi \lor \psi}, x_{\phi}^{r} : \alpha_{\psi} \to \alpha_{\chi \lor \psi}\}.$

• If $\phi \equiv \forall p.\psi$, then $\Gamma_{\phi} = \Gamma_{\psi} \cup \{x_{\phi} : (\alpha_p \to \alpha_{\psi}) \to (\alpha_{\neg p} \to \alpha_{\psi}) \to \alpha_{\forall p.\psi}\}.$

• If
$$\phi \equiv \exists p.\psi$$
, then
 $\Gamma_{\phi} = \Gamma_{\psi} \cup \{x_{\phi}^{0} : (\alpha_{p} \to \alpha_{\psi}) \to \alpha_{\exists p.\psi}, x_{\phi}^{1} : (\alpha_{\neg p} \to \alpha_{\psi}) \to \alpha_{\exists p.\psi}\}.$

For a formula ϕ and a valuation v, let Γ_{ϕ}^{v} be the extension of $\Gamma_{\phi}:$

$$\Gamma^{v}_{\phi} = \Gamma_{\phi} \cup \bigcup_{p \in \mathsf{Dm}(v)} \{ x_{p} : \langle \alpha \rangle^{p}_{v} \}$$

where $\langle \alpha \rangle_v^p = \alpha_p$ if v(p) = 1 and $\langle \alpha \rangle_v^p = \alpha_{\neg p}$ if v(p) = 0.

For a formula ϕ and a valuation v, let Γ_{ϕ}^{v} be the extension of Γ_{ϕ} :

$$\Gamma_{\phi}^{v} = \Gamma_{\phi} \cup \bigcup_{p \in \mathsf{Dm}(v)} \{ x_{p} : \langle \alpha \rangle_{v}^{p} \}$$

where $\langle \alpha \rangle_v^p = \alpha_p$ if v(p) = 1 and $\langle \alpha \rangle_v^p = \alpha_{\neg p}$ if v(p) = 0.

A valuation of a formula ϕ is a valuation defined on the free variables of ϕ .

For a formula ϕ and a valuation v, let Γ_{ϕ}^{v} be the extension of Γ_{ϕ} :

$$\Gamma_{\phi}^{v} = \Gamma_{\phi} \cup \bigcup_{p \in \mathsf{Dm}(v)} \{ x_{p} : \langle \alpha \rangle_{v}^{p} \}$$

where $\langle \alpha \rangle_v^p = \alpha_p$ if v(p) = 1 and $\langle \alpha \rangle_v^p = \alpha_{\neg p}$ if v(p) = 0.

A valuation of a formula ϕ is a valuation defined on the free variables of ϕ .

We write $v \oplus [p := b]$ for the extension of v mapping p to $b \in \{0, 1\}$.

For a formula ϕ and a valuation v, let Γ_{ϕ}^{v} be the extension of Γ_{ϕ} :

$$\Gamma_{\phi}^{v} = \Gamma_{\phi} \cup \bigcup_{p \in \mathsf{Dm}(v)} \{ x_{p} : \langle \alpha \rangle_{v}^{p} \}$$

where $\langle \alpha \rangle_v^p = \alpha_p$ if v(p) = 1 and $\langle \alpha \rangle_v^p = \alpha_{\neg p}$ if v(p) = 0.

A valuation of a formula ϕ is a valuation defined on the free variables of ϕ .

We write $v \oplus [p := b]$ for the extension of v mapping p to $b \in \{0, 1\}$.

We write $\Gamma \not\vdash \tau$ as abbreviation for $\neg \exists M. \ \Gamma \vdash M : \tau$.

We let $\llbracket \phi \rrbracket v$ denote the truth value of ϕ under valuation v, defined by induction on ϕ :

$$\llbracket p \rrbracket v \qquad = \quad v(p)$$

$$\begin{split} \|p\|v &= v(p) \\ \|\neg p\|v &= 0, \text{if } v(p) = 1, \text{else } 1 \\ \|\psi \wedge \chi\|v &= \min\{\|\psi\|v, \|\chi\|v\} \\ \|\psi \vee \chi\|v &= \max\{\|\psi\|v, \|\chi\|v\} \\ \|\forall p.\psi\|v &= \min\{\|\psi\|(v \oplus [p := 1]), \|\psi\|(v \oplus [p := 0])\} \\ \|\exists p.\psi\|v &= \max\{\|\psi\|(v \oplus [p := 1]), \|\psi\|(v \oplus [p := 0])\} \end{split}$$

Lemma 3

For every formula ϕ and every valuation v of ϕ , one has

$$\llbracket \phi \rrbracket v = 1 \iff \exists M. \ \Gamma^v_\phi \vdash M : \alpha_\phi$$

Proof

By induction on ϕ .

Case $\phi \equiv p$. If $\llbracket p \rrbracket v = 1$, i.e., v(p) = 1, then $\Gamma_{\phi}^{v} = \{x_{p}^{v} : \alpha_{p}\}$, so $\Gamma_{\phi}^{v} \vdash x_{p}^{v} : \alpha_{p}$. If $\Gamma_{\phi}^{v} \vdash M : \alpha_{p}$, then, by construction of Γ_{ϕ}^{v} , it must be the case that $\Gamma_{\phi}^{v} = \{x_{p}^{v} : \alpha_{p}\}$, so that v(p) = 1.

Case $\phi \equiv \neg p$. Similar to previous case.

 $\mathsf{Case}\ \phi \equiv \chi \wedge \psi$

If $\llbracket \phi \rrbracket v = 1$, then $\llbracket \chi \rrbracket v = \llbracket \psi \rrbracket v = 1$. By induction hypothesis, $\Gamma_{\chi}^{v} \vdash M : \alpha_{\chi}$ and $\Gamma_{\psi}^{v} \vdash N : \alpha_{\psi}$, for some M and N. It follows that $\Gamma_{\chi \land \psi}^{v} \vdash x_{\chi \land \psi} MN : \alpha_{\chi \land \psi}$.

If $\llbracket \phi \rrbracket v = 0$, then $\llbracket \chi \rrbracket v = 0$ or $\llbracket \psi \rrbracket v = 0$. If $\llbracket \chi \rrbracket v = 0$, then by induction hypothesis, $\Gamma_{\chi}^{v} \not\vdash \alpha_{\chi}$, hence by construction of Γ_{ϕ}^{v} , we must have $\Gamma_{\phi}^{v} \not\vdash \alpha_{\chi}$. It follows that $\Gamma_{\phi}^{v} \not\vdash \alpha_{\chi \wedge \psi}$. The case where $\llbracket \psi \rrbracket v = 0$ is analogous.

 $\mathsf{Case}\ \phi \equiv \forall p.\psi$

If $\llbracket \phi \rrbracket v = 1$, then $\llbracket \psi \rrbracket v_0 = \llbracket \psi \rrbracket v_1 = 1$, where $v_0 = v \oplus [p := 0]$ and $v_1 = v \oplus [p := 1]$. By induction hypothesis, we have $\Gamma_{\psi}^{v_0} \vdash M : \alpha_{\psi}$ and $\Gamma_{\psi}^{v_1} \vdash N : \alpha_{\psi}$, for some M and N, which (by definitions) can also be written as $\Gamma_{\phi}^{v} \cup \{x_p : \alpha_{\neg p}\} \vdash M : \alpha_{\psi}$ and $\Gamma_{\phi}^{v} \cup \{x_p : \alpha_{\neg p}\} \vdash N : \alpha_{\psi}$. Hence, $\Gamma_{\phi}^{v} \vdash \lambda x_p : \alpha_{\neg p} . M : \alpha_{\neg p} \to \alpha_{\psi}$ and $\Gamma_{\phi}^{v} \vdash \lambda x_p : \alpha_p . N : \alpha_p \to \alpha_{\psi}$. It follows that we have

$$\Gamma_{\phi}^{v} \vdash x_{\phi}(\lambda x_{p} : \alpha_{p}.N)(\lambda x_{p} : \alpha_{\neg p}.M) : \alpha_{\phi}$$

 $\mathsf{Case}\ \phi \equiv \forall p.\psi$

If $\llbracket \phi \rrbracket v = 0$, then either we have $\llbracket \psi \rrbracket (v \oplus [p := 0]) = 0$ or $\llbracket \psi \rrbracket (v \oplus [p := 1]) = 0$. Suppose that the former is the case. Then, by induction hypothesis, we have $\Gamma_{\psi}^{v_0} \not\vDash \alpha_{\psi}$, where $v_0 = v \oplus [p := 0]$. Hence, by definitions, we have $\Gamma_{\psi} \cup \{x_p : \alpha_{\neg p}\} \not\vDash \alpha_{\psi}$. By construction of Γ_{ϕ}^v , it follows that we have $\Gamma_{\phi}^v \not\vDash \alpha_{\phi}$. The case where $\llbracket \psi \rrbracket (v \oplus [p := 1]) = 0$ is analogous.

Remaining cases are left as an exercise :)

Proposition 2

```
Inhabitation in \lambda^{\rightarrow} is PSPACE-hard.
```

Proof.

In order to decide provability of QBF formula ϕ , it suffices to ask whether $\Gamma_{\phi} \vdash ?: \alpha_{\phi}$, by Lemma 3. Since the construction of Γ_{ϕ} can be carried out in logarithmic space, the proposition follows from PSPACE-hardness of QBF.

Theorem 4 (Statman 1979)

Inhabitation in λ^{\rightarrow} is pspace-complete.

Proof.

By Proposition 1 and Proposition 2.

R.E. Ladner.

The Computational Complexity of Provability in Systems of Modal Propositional Logic.

SIAM J. Comput., 6(3):467 - 480, 1977.

Richard Statman.

Intuitionistic Propositional Logic is Polynomial-space Complete. *Theoretical Computer Science*, 9:67–72, 1979.

M.H. Sørensen and P. Urzyczyn.

Lectures on the Curry-Howard Isomorphism, volume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2006.

P. Urzyczyn.

Inhabitation in Typed Lambda-Calculi (A Syntactic Approach). In *TLCA'97, Typed Lambda Calculi and Applications, Proceedings,* volume 1210 of *LNCS*, pages 373–389. Springer, 1997.