Logische Grundlagen des
Software Engineerings

Prof. Dr. Jakob Rehof

Lehrstuhl 14, Software
Engineering

Type checking and related
problems

e Decision problems arising from the
(mostly Curry-style) ternary predicate

I'- M:T

Type checking, reconstruction,
Inhabitation

G.0.11. DEFINITION.

1. The type checking problem is to decide whether I' = M : 7 holds, for
a given context I', a term M and a type 7.

]

. The type reconstruction problem, also called typability problem, is to
decide, for a given termmn M, whether there exist a context I' and a
type 7. such that I' = M : 7 holds, i.e., whether M is typable.

3. The type inhabitation problem, also called type emptiness problem, is
to decide, for a given type 7, whether there exists a closed term M,
such that = M : 7 holds. (Then we say that T is non-empty and has
an inhabitant M).

Inhabitation and validity

6.0.12. PROPOSITION. The type inhabitation problem for the simply-typed
lambda caleulus is recursively equivalent to the validity problem in the im-
plicational fragment of intuitionistic propositional logic.

ProoOr. Obvious. []

Why??

12 variants, of which 4 are trivial ...

e 7
e ' 7:7:
o 77

o 'HT:T.

... and 8 are Interesting:
1) T'EM:7 (type checking):
2) FM .7 (type checking for closed terms);
3) ?F M :7 (type checking without context);
4) ?HM :?7 (type reconstruction);
5) FM:7 (type reconstruction for closed terms):

6) ' M : 7 (type reconstruction in a context);

7) F 7.7 (inhabitation):

8) I' = 7:7 (inhabitation in a context).

Unification

e Solving systems of term equations

Terms

6.3.1. DEFINITION.

1. A first-order signature is a finite family of function, relation and con-
stant symbols. Each function and relation symbol comes with a des-
ignated non-zero arity. (Constants are sometimes treated as zero-ary
functions.) In this section we consider only algebraic signatures, i.e.,
signatures without relation symbols.

2. An algebraic term over a signature X, or just ferm is either a variable
or a constant in X, or an expression of the form (ft;...t,), where f is
an n-ary function symbol, and t;.... .t, are algebraic terms over ».3
We usually omit outermost parentheses.

Equations

(G.3.2. DEFINITION.,

1. An equation is a pair of terms, written “t = u”. A system of equations
1s a finite set of equations. Variables occurring in a system of equations

are called unknowns.

2. A substitution 1s a function from variables to terms which is the iden-
tity almost everywhere. Such a function S is extended to a function
from terms to terms by S(ft1...t,) = fS(t1)---S(t,) and S(c) = ¢.*

3. A substitution S is a solution of an equation *“t = u” iff S(t) = S(u)
(meaning that S(¢) and S(u) is the same term). It is a solution of a
system £ of equations iff it is a solution of all equations in E.

Equations

6G.3.3. DEFINITION.,

1. A system of equations is in a solved form iff it has the following prop-
erties:
e All equations are of the form “r = 1", where x is a variable;

e A variable that occurs at a left-hand side of an equation does not
occur at the right-hand side of any equation;

e A variable may occur in only one left-hand side.

Equations

2. A system of equations 1s inconsistent iff it contains an equation of
either of the forms:

o “guy...up, = ft1...t;7, where f and g are two different function
symbols;

o “c= fty...t;7, or “fty...{, =", where ¢ 1s a constant symbol
and f 18 an n-ary Tunct.ln::n a}rmhol,

e “c=d", where ¢ and d are two different constant symbols;

= fty...t;7, where x 18 a variable, f is an n-ary function
5},—'1111:-01, and x occurs in one of ty,... ,t,.

3. Two systems of equations are equivalent iff they have the same solu-
tions.

Equations

It is easy to see that an inconsistent system has no solutions and that a
solved system E has a solution Sp defined as follows:

e If a variable = is undefined then Sy(x) = =;

o If “x =1" is in E, then Sy(x)=t.

Unification algorithm (Robinson)

6.3.4. LEMMA. For every system E of equations, there is an equivalent sys-
tem E' which is either inconsistent or in a solved form. In addition, the
system E’ can be obtained by performing a finite number of the following
operations:

a) Replace “r =t”7 and “xr = s” (where t is not a variable) by “r = t”

and “t = 87;
b) Replace “t =x7 by “r =1";
c) Replace “ft1... .t = fup...u,” by "ty =u1”, ..., Tp=up’";
d) Replace “r =t" and “r =3s8" by “r=1t" and “r|lr :=1t] = sl :=1]";

e) Remove an equation of the form “t =17,

Unification algorithm (Robinson)

G.3.5. COROLLARY. The unification problem is decidable. [

In fact, the above algorithm can be optimized to work in polynomial time
(Exercise 6.8.10), provided we only need to check whether a solution exists,
and we do not need to write it down explicitly, cf. Exercise 6.8.6. The
following result is from Dwork et al [33].

6.3.6. THEOREM. The unification problem is P-complete with respect to Log-
space reductions. N

Principal (most general) solution

6.3.7. DEFINITION.

e [f P and R are substitutions then P o R is a substitution defined by
(PoR)(x) = P(R(x)).

e We say that a substitution S is an instance of another substitution R
(written R < S) iff S = P o R, for some substitution P.

e A solution R of a system £ is principal iff the following equivalence
holds for all substitutions S:

Sisasolutionof £ iff R <8S.

6.3.8. PROPOSITION. If a system of equations has a solution then it has a
principal one.

Type reconstruction

G.4.2. DEFINITION.

o [f M is a variable x, then Ey; = {} and 7y = ., where a, is a fresh
tyvpe variable.

e If M 1s an application P then 7y = «, where « is a fresh type
variable, and Eyr = Ep U Eg U {Tp = T — a}.

e If M is an abstraction Ax. P, then Eyy = Ep and 7y = a, — 7p.

Type reconstruction

6.4.3. LEMMA.

1. If I' = M : p, then there exists a solution S of E,;, such that p =
S(tar) and S(a,) = T(x), for all variables x € FV(M).

2. Let S be a solution of Eyr, and let I be such that I'(x) = S(a,), for
allr € FV(M). Then I'= M : S(1pr).

PROOF. Induction with respect to M.]

Principal pair, principal type

6G.4.4. DEFINITION. A pair (I', 7), consisting of a context (such that the do-
main of I is F'V(M)) and a type, is called the principal pair for a term M
iff the following holds:

e ' M :T:

o If TV M : 7" then TV O S(I") and 7" = S(7), for some substitution S.

(Note that the first condition implies S(I') = M : S(7), for all S.) If M is
closed (in which case I'" is empty)., we say that 7 is the principal type of M.

Principal type theorem

(G.4.5. COROLLARY. If a term M is typable, then there exists a principal pair
for M. This principal pair is unique up to renaming of type variables.

PROOF. Immediate from Proposition 6.3.8. O

Example

(G.4.6. EXAMPLE.

e The principal type of S'is (&« — 7 — ~) — (o — 3) — a — 7. The
type (¢ — 3 — a) — (o — [3) — « — « can also be assigned to S,
but it 1s not principal.

e The principal type of all the Church numerals is (0« — @) — a — a.
But the type ((o« — 3) — a — 3) — (@ — (3) — a — 3 can also be
assigned to each numeral.

	Logische Grundlagen des Software Engineerings
	Type checking and related problems
	Type checking, reconstruction, inhabitation
	Inhabitation and validity
	12 variants, of which 4 are trivial ...
	... and 8 are interesting:
	Unification
	Terms
	Equations
	Equations
	Equations
	Equations
	Unification algorithm (Robinson)
	Unification algorithm (Robinson)
	Principal (most general) solution
	Type reconstruction
	Type reconstruction
	Principal pair, principal type
	Principal type theorem
	Example

