Komponenten- und Service-orientierte Softwarekonstruktion

Vorlesung 5: Combinatory Logic Synthesis

Jakob Rehof
LS XIV – Software Engineering

TU Dortmund Sommersemester 2015

SS 2015

$$\frac{\Gamma \vdash F : \tau' \to \tau \quad \Gamma \vdash G : \tau'}{\Gamma \vdash (F \ G) : \tau} (\to \mathsf{E})$$

as logical model of applicative composition of named component interfaces $(F:\rho)\in\Gamma$ from a repository Γ , satisfying goal τ

$$\frac{\Gamma \vdash F : \tau' \to \tau \quad \Gamma \vdash G : \tau'}{\Gamma \vdash (F \ G) : \tau} (\to \mathsf{E})$$

as logical model of applicative composition of named component interfaces $(F:\rho)\in\Gamma$ from a repository Γ , satisfying goal τ

• Inhabitation problem as foundation for automatic synthesis: $\exists F. \ \Gamma \vdash F : \tau$? Notation $\Gamma \vdash ? : \tau$

$$\frac{\Gamma \vdash F : \tau' \to \tau \quad \Gamma \vdash G : \tau'}{\Gamma \vdash (F \ G) : \tau} (\to \mathsf{E})$$

as logical model of applicative composition of named component interfaces $(F : \rho) \in \Gamma$ from a repository Γ , satisfying goal τ

- Inhabitation problem as foundation for automatic synthesis: $\exists F. \ \Gamma \vdash F : \tau$? Notation $\Gamma \vdash ? : \tau$
 - Does there exist a program composition F from repository Γ with $\Gamma \vdash F : \tau$? Inhabitation algorithm is used to *construct* (synthesize) F from Γ and τ

$$\frac{\Gamma \vdash F : \tau' \to \tau \quad \Gamma \vdash G : \tau'}{\Gamma \vdash (F \ G) : \tau} (\to \mathsf{E})$$

as logical model of applicative composition of named component interfaces $(F : \rho) \in \Gamma$ from a repository Γ , satisfying goal τ

- Inhabitation problem as foundation for automatic synthesis: $\exists F. \ \Gamma \vdash F : \tau \ ?$ Notation $\Gamma \vdash ? : \tau$
 - ▶ Does there exist a program composition F from repository Γ with $\Gamma \vdash F : \tau$? Inhabitation algorithm is used to *construct* (synthesize) F from Γ and τ
- CLS is inherently component-oriented

- Components are exposed as typed combinator symbols $(F:\tau)$, representing component names with types as interfaces. Types will be generalized later.
- Component composition as applicative combinations (FG). Composition will be generalized later.
- However, we will first have to generalize the notion of combinatory logic from any particular *fixed base* (like $\mathfrak{B} = \{S, K, I\}$) to arbitrary finite sets of combinators.

CL vs λ -calculus

- Recall from Lecture 3 that the fixed base $\mathfrak{B} = \{\mathbf{S}, \mathbf{K}, \mathbf{I}\}$ (even $\mathfrak{B} = \{\mathbf{S}, \mathbf{K}\}$) is equivalent to λ -calculus, both untyped and in simple types.
- We saw that inhabitation in λ^{\rightarrow} and simple typed SKI-calculus is PSPACE-complete (Statman).
- Proof/term enumeration, Ben-Yelles, Hindley: See [Hindley, 2008].

CL vs λ -calculus

- Recall from Lecture 3 that the fixed base $\mathfrak{B} = \{\mathbf{S}, \mathbf{K}, \mathbf{I}\}$ (even $\mathfrak{B} = \{\mathbf{S}, \mathbf{K}\}$) is equivalent to λ -calculus, both untyped and in simple types.
- We saw that inhabitation in λ^{\rightarrow} and simple typed SKI-calculus is PSPACE-complete (Statman).
- Proof/term enumeration, Ben-Yelles, Hindley: See [Hindley, 2008].
- But a *fixed base* is not the right model for composition synthesis, since repository (Γ) varies
- \bullet And $\lambda\text{-calculus}$ (SKI-calculus) as model is not component-oriented as is CL

$$\begin{split} & \frac{\Gamma}{\Gamma, x: \tau \vdash_{\text{SKI}} x: \tau} (\text{var}) \\ & \frac{\Gamma}{\Gamma \vdash_{\text{SKI}} \mathbf{I}: \tau \to \tau} (\mathbf{I}) \\ & \frac{\Gamma}{\Gamma \vdash_{\text{SKI}} \mathbf{K}: \tau \to \sigma \to \tau} (\mathbf{K}) \\ & \frac{\Gamma}{\Gamma \vdash_{\text{SKI}} F: \tau \to \sigma \to \rho} \to (\tau \to \sigma) \to \tau \to \rho} (\mathbf{S}) \\ & \frac{\Gamma \vdash_{\text{SKI}} F: \tau \to \sigma \to \Gamma \vdash_{\text{SKI}} G: \tau}{\Gamma \vdash_{\text{SKI}} (FG): \sigma} (\to \mathsf{E}) \end{split}$$

Notice that variables x have fixed, monomorphic types, whereas combinators $\mathbf{S}, \mathbf{K}, \mathbf{I}$ have infinitely many types (their types are schematic or polymorphic). We shall return to this important point in Lecture 5.

Fix a typed base \mathfrak{B} , for example SKI:

$$\begin{array}{ll} \mathbf{S} & : & (\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma \\ \mathbf{K} & : & \alpha \to \beta \to \alpha \\ \mathbf{I} & : & \alpha \to \alpha \end{array}$$

with the rules, for any given base \mathfrak{B} :

$$\begin{split} \frac{(X:\tau) \in \mathfrak{B}, \quad S: \mathbb{V} \to \mathbb{T}}{\Gamma \vdash_{\mathfrak{B}} X: S(\tau)} \text{(comb)} \\ \\ \frac{\Gamma}{\Gamma, x: \tau \vdash_{\mathfrak{B}} x: \tau} \text{(var)} \\ \\ \frac{\Gamma \vdash_{\mathfrak{B}} F: \tau \to \sigma \quad \Gamma \vdash_{\mathfrak{B}} G: \tau}{\Gamma \vdash_{\mathfrak{B}} (FG): \sigma} \text{(\toE$)} \end{split}$$

Assuming that variables x are considered special combinator symbols with constant types, we can assume that Γ is an arbitrary set of typed combinator symbols and simplify the presentation to:

$$\begin{split} &\frac{[S:\mathbb{V}\to\mathbb{T}]}{\Gamma,X:\tau\vdash_{\scriptscriptstyle{\mathrm{CL}}}X:S(\tau)} (\mathsf{var}) \\ &\frac{\Gamma\vdash_{\scriptscriptstyle{\mathrm{CL}}}F:\tau\to\sigma\quad\Gamma\vdash_{\scriptscriptstyle{\mathrm{CL}}}G:\tau}{\Gamma\vdash_{\scriptscriptstyle{\mathrm{CL}}}(FG):\sigma} (\to\!\mathsf{E}) \end{split}$$

- We consider the *relativized inhabitation* problem:
 - ▶ **Given** Γ **and** τ , does there exist F such that $\Gamma \vdash_{\mathsf{CL}} F : \tau$?

- We consider the *relativized inhabitation* problem:
 - ▶ Given Γ and τ , does there exist F such that $\Gamma \vdash_{\mathsf{CL}} F : \tau$?
- Relativized inhabitation in simple types is much harder than inhabitation in the fixed theory of λ[→] (SKI)
 - Undecidable: Linial-Post theorems, 1948 ff.

- We consider the *relativized inhabitation* problem:
 - ▶ Given Γ and τ , does there exist F such that $\Gamma \vdash_{\mathsf{CL}} F : \tau$?
- Relativized inhabitation in simple types is much harder than inhabitation in the fixed theory of λ^{\rightarrow} (SKI)
 - Undecidable: Linial-Post theorems, 1948 ff.
- Reason: instead of considering a fixed theory (λ^{\rightarrow} , IPC) we consider an arbitrary input theory

- We consider the *relativized inhabitation* problem:
 - ▶ Given Γ and τ , does there exist F such that $\Gamma \vdash_{\mathsf{CL}} F : \tau$?
- Relativized inhabitation in simple types is much harder than inhabitation in the fixed theory of λ^{\rightarrow} (SKI)
 - ▶ Undecidable: Linial-Post theorems, 1948 ff.
- Reason: instead of considering a fixed theory (λ^{\rightarrow} , IPC) we consider an arbitrary input theory
- The CLS view: Already in simple types, relativized inhabitation defines a Turing-complete logic programming language for component composition

Two-counter automaton acceptance is undecidable. Two counter automaton $\mathcal{A}=\langle Q,q_0,q_F,\delta\rangle$, control states Q, inital state q_0 , final state q_F , counters $c_1,c_2\in\mathbb{N}$, transition relation δ given by (i=1,2):

- $q: c_i := c_i + 1; \mathsf{goto}\ p$
- $q: c_i := c_i 1$; goto p
- q:if $(c_i=0)$ then goto p else goto r

Configurations C = (q, n, m), $q \in Q$, n and m contents of counters c_1 resp. c_2 .

Types of the form $[\mathcal{C}]=q\to s^n(0)\to s^m(0)$ will represent configurations $\mathcal{C}=(q,n,m)$

- Fin: $q_F \to \alpha \to \beta$
- $q: c_1 := c_1 + 1$; goto p:

$$Add_1[q,p]: (p \to s(\alpha) \to \beta) \to (q \to \alpha \to \beta).$$

• $q: c_1 := c_1 - 1$; goto p:

$$\operatorname{Sub}_1[q,p]: (p \to \alpha \to \beta) \to (q \to s(\alpha) \to \beta).$$

- q:if $(c_1=0)$ then goto p else goto r:
 - ▶ $\mathsf{Tst}_1^\mathsf{Z}[\mathsf{q},\mathsf{p}]: (p \to 0 \to \beta) \to (q \to 0 \to \beta)$ and
 - ▶ $\operatorname{Tst}_1^{\operatorname{NZ}}[\mathbf{q},\mathbf{r}]: (r \to s(\alpha) \to \beta) \to (q \to s(\alpha) \to \beta).$

Reduction

Consider the two-counter automaton

$$\mathcal{A} = q_0 : c_1 := c_1 - 1$$
; goto q_1
 $q_1 : if (c_1 = 0)$ then goto q_F else goto q_0

from initial state $(q_0, 1, 0)$. Since

Fin :
$$q_F \to 0 \to 0$$

 $\mathtt{Tst}_1^Z[q_1, q_F]$: $(q_F \to 0 \to 0) \to (q_1 \to 0 \to 0)$
 $\mathtt{Sub}_1[q_0, q_1]$: $(q_1 \to 0 \to 0) \to (q_0 \to s(0) \to 0)$

we get

$$\Gamma_{\mathcal{A}} \vdash \mathtt{Sub}_1[\mathtt{q}_0,\mathtt{q}_1] \; (\mathtt{Tst}_1^{\mathtt{Z}}[\mathtt{q}_1,\mathtt{q}_{\mathtt{F}}] \; \mathtt{Fin}) : q_0 \to s(0) \to 0$$

Reduction

Theorem 1

Let $\mathcal A$ be a two-counter automaton with initial configuration (q_0,n_0,m_0) . $\mathcal A$ accepts if and only if there exists a term e with $\Gamma_{\mathcal A}\vdash e:q_0\to s^{n_0}(0)\to s^{m_0}(0)$.

Lemma 2

Let $\mathcal C$ and $\mathcal C'$ be configurations in $\mathcal A$. We have $\mathcal C \to \mathcal C'$ if and only if there is a term e with $\Gamma_{\mathcal A} \vdash e : [\mathcal C'] \to [\mathcal C]$.

Lemma 3

Let $\mathcal C$ be a configuration of $\mathcal A$. $\mathcal C$ leads to acceptance in $\mathcal A$ if and only if there is a term e with $\Gamma_{\mathcal A} \vdash e : [\mathcal C]$.

Exercise 1

Prove Theorem 1.

- ullet The input repository Γ is a logic program at the level of types
- Each combinator type is a rule in the program
- The inhabitation goal is the input goal to the program
- Search for inhabitants is the execution of the program
- Inhabitants are programs synthesized as solution space to the program

Broadly related (proof search as semantics of generalized logic programming):

D. Miller, G. Nadathur, F. Pfenning, A. Scedrov: *Uniform Proofs as a Foundation for Logic Programming*, Ann. Pure App. Logic, 1991

"Linial-Post Spectrum"

14 / 18

Semantic specification

Simple types are not sufficient to specify composition (even though they are Turing-complete under relativized inhabitation).

Intersection types

Definition 4 (Intersection types)

Let $\mathbb V$ denote a denumerable set of *type variables*, ranged over by metavariables $\alpha,\beta,\gamma,\ldots$, and let b range over a set $\mathbb B$ of *type constants*. The set $\mathbb T_\cap$ of *intersection types*, ranged over by τ,σ,ρ,\ldots , is defined inductively by:

- $\bullet \ \alpha \in \mathbb{V} \Rightarrow \alpha \in \mathbb{T}_{\cap}$
- $b \in \mathbb{B} \Rightarrow b \in \mathbb{T}_{\cap}$
- $\tau \in \mathbb{T}_{\cap}, \sigma \in \mathbb{T}_{\cap} \Rightarrow \tau \to \sigma \in \mathbb{T}_{\cap}$
- $\tau \in \mathbb{T}_{\cap}, \sigma \in \mathbb{T}_{\cap} \Rightarrow \tau \cap \sigma \in \mathbb{T}_{\cap}$

Intersection types are considered modulo associativity, commutativity and idempotence of intersection: $\tau \cap (\sigma \cap \rho) = (\tau \cap \sigma) \cap \rho, \tau \cap \sigma = \sigma \cap \tau, \tau \cap \tau = \tau$.

$$\overline{\Gamma, x : \tau \vdash x : \tau}$$
 (var)

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x.M : \tau \to \sigma} (\to I)$$

$$\frac{\Gamma \vdash M : \tau \to \sigma \quad \Gamma \vdash N : \tau}{\Gamma \vdash MN : \sigma} (\to \mathsf{E})$$

$$\frac{\Gamma \vdash M : \tau_1 \quad \Gamma \vdash M : \tau_2}{\Gamma \vdash M : \tau_1 \cap \tau_2} (\cap \mathsf{I}) \qquad \frac{\Gamma \vdash M : \tau_1 \cap \tau_2}{\Gamma \vdash M : \tau_i} (\cap \mathsf{E})$$

Major reference for this system (a.k.a. "BCD", Barendregt-Coppo-Dezani):

[Barendregt et al., 1983].

Intersection type system λ^{\cap}

A good exposition of the following fundamental result (which goes back to around 1980) can be found in [Ghilezan, 1996].

Lemma 5 (Subject expansion)

Suppose $M\to_{\beta} N$ by contracting the redex occurrence $(\lambda x.P)Q$ in M. If $\Gamma\vdash M:\sigma$ and Q is typable in the same context Γ , then $\Gamma\vdash N:\sigma$.

Theorem 6 (Fundamental theorem for λ^{\cap})

A term M is typable in system λ^{\cap} , if and only if, M is strongly normalizing.

Corollary 7 (Undecidability)

Typability in λ^{\cap} is undecidable.

- Barendregt, H., Coppo, M., and Dezani-Ciancaglini, M. (1983). A Filter Lambda Model and the Completeness of Type Assignment. *Journal of Symbolic Logic*, 48(4):931–940.
 - Ghilezan, S. (1996).
 Strong Normalization and Typability with Intersection Types.

 Notre Dame Journal of Formal Logic, 37(1):44–52.
- Hindley, J. R. (2008).
 Basic Simple Type Theory.
 Cambridge Tracts in Theoretical Computer Science, vol. 42.