Komponenten- und Service-orientierte

Softwarekonstruktion

Vorlesung 5: Combinatory Logic Synthesis

Jakob Rehof
LS XIV — Software Engineering

TU Dortmund
Sommersemester 2015

SS 2015

J. Rehof (TU Dortmund) KSOS SS 2015 1/18

Composition Synthesis

@ Function composition in Combinatory Logic

THFF: 7 > FI—G:T’(_}E)
'H(FG):T

as logical model of applicative composition of named component
interfaces (F : p) € ' from a repository ', satisfying goal T

J. Rehof (TU Dortmund) KSOS SS 2015 2 /18

Composition Synthesis

@ Function composition in Combinatory Logic

THFF: 7 > FI—G:T’(_}E)
'H(FG):T

as logical model of applicative composition of named component
interfaces (F : p) € ' from a repository ', satisfying goal T

@ Inhabitation problem as foundation for automatic synthesis:
JF.TFF:77 Notation' -7 : 7

J. Rehof (TU Dortmund) KSOS SS 2015 2 /18

Composition Synthesis

@ Function composition in Combinatory Logic

THFF: 7 > FI—G:T'(
'H(FG):T

—E)

as logical model of applicative composition of named component
interfaces (F : p) € ' from a repository ', satisfying goal T
@ Inhabitation problem as foundation for automatic synthesis:
JF.T'HF :77 Notation ' 7 : 7
» Does there exist a program composition F' from repository I'" with

'k F: 7 7 Inhabitation algorithm is used to construct (synthesize) F
from I' and 7

J. Rehof (TU Dortmund) KSOS SS 2015 2 /18

Composition Synthesis

@ Function composition in Combinatory Logic

THFF: 7 > FI—G:T'(
'H(FG):T

—E)

as logical model of applicative composition of named component
interfaces (F : p) € ' from a repository ', satisfying goal T

@ Inhabitation problem as foundation for automatic synthesis:
JF.TFF:77 Notation' -7 : 7

» Does there exist a program composition F' from repository I'" with
'k F: 7 7 Inhabitation algorithm is used to construct (synthesize) F
from I" and 7

@ CLS is inherently component-oriented

J. Rehof (TU Dortmund) KSOS SS 2015 2 /18

Foundations in Combinatory Logic

e Components are exposed as typed combinator symbols (F : 7),
representing component names with types as interfaces. Types will be
generalized later.

e Component composition as applicative combinations (F'G).
Composition will be generalized later.

@ However, we will first have to generalize the notion of combinatory
logic from any particular fixed base (like B = {S, K, I}) to arbitrary
finite sets of combinators.

J. Rehof (TU Dortmund) KSOS SS 2015 3/18

CL vs A-calculus

o Recall from Lecture 3 that the fixed base B = {S, K, I} (even
B = {S,K}) is equivalent to A-calculus, both untyped and in simple

types.
@ We saw that inhabitation in A™ and simple typed SKl-calculus is
PSPACE-complete (Statman).

@ Proof/term enumeration, Ben-Yelles, Hindley: See [Hindley, 2008].

J. Rehof (TU Dortmund) KSOS SS 2015 4 /18

CL vs A-calculus

o Recall from Lecture 3 that the fixed base B = {S, K, I} (even
B = {S,K}) is equivalent to A-calculus, both untyped and in simple

types.
@ We saw that inhabitation in A™ and simple typed SKl-calculus is
PSPACE-complete (Statman).

@ Proof/term enumeration, Ben-Yelles, Hindley: See [Hindley, 2008].

@ But a fixed base is not the right model for composition synthesis,
since repository (I') varies

@ And A-calculus (SKl-calculus) as model is not component-oriented as
is CL

J. Rehof (TU Dortmund) KSOS SS 2015 4 /18

Recall combinatory logic SKI (Lecture 3)

| R ol e T(var)

ey

't Iim— 71

(K)

' KiT—o0o—71

(S)

It S:(t—=0—=p) = (T—o0)=>T—0p

't Fim— 0o FI—SKIG:T(%E)
Ihaa (FG) : o

Notice that variables x have fixed, monomorphic types, whereas combinators S, K, I
have infinitely many types (their types are schematic or polymorphic). We shall return
to this important point in Lecture 5.

J. Rehof (TU Dortmund) KSOS SS 2015 5/18

Combinatory logic CL(®8)

Fix a typed base B, for example SKI:

S : (a=B—-9)=(a=p)—2a—y
K : a—>8—=>«a
I D a—

with the rules, for any given base B:

(X:1)e®B, S: VT
Tre X:S(r) (©omb)

(var)

| I A e A

't FiT—>0 TI'bFsG:7T
E
ke (FG):o (=E)

J. Rehof (TU Dortmund) KSOS SS 2015 6 /18

Combinatory logic CL

Assuming that variables x are considered special combinator symbols with
constant types, we can assume that I' is an arbitrary set of typed
combinator symbols and simplify the presentation to:

[S:V =T
DX :7ko X:S(1) (var)

'ty F:T7— o0 FI—CLG:T(
'k, (FG):0o

—E)

J. Rehof (TU Dortmund) KSOS SS 2015 7 /18

Relativized Inhabitation

@ We consider the relativized inhabitation problem:
» Given I" and 7, does there exist F such thatT' -+, F : 77

J. Rehof (TU Dortmund) KSOS SS 2015 8 /18

Relativized Inhabitation

@ We consider the relativized inhabitation problem:
» Given I" and 7, does there exist F such thatT' -+, F : 77

o Relativized inhabitation in simple types is much harder than
inhabitation in the fixed theory of A™ (SKI)

» Undecidable: Linial-Post theorems, 1948 ff.

J. Rehof (TU Dortmund) KSOS SS 2015 8 /18

Relativized Inhabitation

@ We consider the relativized inhabitation problem:
» Given I" and 7, does there exist F such thatT' -+, F : 77

o Relativized inhabitation in simple types is much harder than
inhabitation in the fixed theory of A™ (SKI)

» Undecidable: Linial-Post theorems, 1948 ff.

@ Reason: instead of considering a fixed theory (A™*, IPC) we consider
an arbitrary input theory

J. Rehof (TU Dortmund) KSOS SS 2015 8 /18

Relativized Inhabitation

@ We consider the relativized inhabitation problem:
» Given I" and 7, does there exist F such thatT' -+, F : 77

o Relativized inhabitation in simple types is much harder than
inhabitation in the fixed theory of A™ (SKI)

» Undecidable: Linial-Post theorems, 1948 ff.
@ Reason: instead of considering a fixed theory (A™*, IPC) we consider
an arbitrary input theory

@ The CLS view: Already in simple types, relativized inhabitation
defines a Turing-complete logic programming language for component
composition

J. Rehof (TU Dortmund) KSOS SS 2015 8 /18

Turing-Completeness of Simple Types!

Two-counter automaton acceptance is undecidable. Two counter
automaton A = (@, qo, qr,9), control states (), inital state qo, final state
qr, counters ¢y, co € N, transition relation § given by (1 = 1,2):

@ q:c;:=c;+ 1;gotop
@ q:ci:=c; —1l;gotop
@ q:if (¢; =0) then goto p else goto 7

Configurations C = (q¢,n,m), ¢ € Q, n and m contents of counters ¢,
resp. ca.

Types of the form [C] = ¢ — s"(0) — s™(0) will represent configurations
C =(g,n,m)

J. Rehof (TU Dortmund) KSOS SS 2015 9 /18

Encoding of A into I' 4

Fin:qp > a—

q:c1:=cy+ 1;goto p:
Addi[q,p] : (p = s(a) = B) = (¢ > a — B).
@ q:cy:=c1 — 1;goto p:

Subs[q, p] : (p—>a —>ﬂ) — (q—>s(a) —>5).

q:if (c1 =0) then goto p else goto 7:
» Tst?[q,p|: (p—>0—>ﬁ) — (q—>0—>,8) and
» Tst?[q, 1] : (r — s(a) = B) — (q — s(a) — B).

J. Rehof (TU Dortmund) KSOS SS 2015 10 / 18

Reduction

Consider the two-counter automaton

A = q:c1:=c1—1;gotoq
q1:if (c1 =0) then goto gr else goto g

from initial state (qo, 1,0). Since

Fin :qgr —>0—0
Tst[qs.qr] @ (qp — 0 —0) = (¢ — 0 — 0)
Subi[qo,q1] : (g1 = 0—0) — (g — s(0) = 0)

we get

[4+ Subs[qo, q1] (Tst?[q1,qr| Fin) : go — s(0) — 0

J. Rehof (TU Dortmund) KSOS SS 2015 11 /18

Reduction

Theorem 1

Let A be a two-counter automaton with initial configuration (go,no, mo). A accepts if
and only if there exists a term e with ' 4 e : go — s™°(0) — s™°(0).

Lemma 2

Let C and C' be configurations in A. We have C — C' if and only if there is a term e
withTake:[C'] = [C].

Lemma 3

Let C be a configuration of A. C leads to acceptance in A if and only if there is a term
ewithTate:[C].

Exercise 1

Prove Theorem 1.

J. Rehof (TU Dortmund) KSOS SS 2015 12 /18

Types as Logic Programs for Composition

The input repository I' is a logic program at the level of types
Each combinator type is a rule in the program

o
o
@ The inhabitation goal is the input goal to the program
@ Search for inhabitants is the execution of the program
o

Inhabitants are programs synthesized as solution space to the program
Broadly related (proof search as semantics of generalized logic programming)

D. Miller, G. Nadathur, F. Pfenning, A. Scedrov: Uniform Proofs as a Foundation for Logic Programming, Ann. Pure App
Logic, 1991

J. Rehof (TU Dortmund) KSOS SS 2015 13 /18

“Linial-Post Spectrum”

2EXPTIME e

EXPTIME

PSPACE L4

CcO-NP @

PTIME

J. Rehof (TU Dortmund) ‘. o i SS 2015

Semantic specification

Simple types are not sufficient to specify composition (even though they
are Turing-complete under relativized inhabitation).

J. Rehof (TU Dortmund) KSOS SS 2015 15 / 18

Intersection types

Definition 4 (Intersection types)

Let V denote a denumerable set of type variables, ranged over by metavariables
a,B,7, ..., and let b range over a set B of type constants. The set T of intersection
types, ranged over by 7,0, p, ..., is defined inductively by:

a€eV=aecThH
beB=beTH
TGTQ,UGTQ#T—)UGTQ

TE€Th,c€Th=71No €Tnh

Intersection types are considered modulo associativity, commutativity and idempotence
of intersection: TN (cNp)=(rNo)Np,TNo=cN7,7TNT=T.

J. Rehof (TU Dortmund) KSOS SS 2015 16 / 18

Intersection type system \"

(var)

| I o e v

Tx:7H-M:o (=)
I'FXeM:7—o0o

'-M:7—0 T'EFN:T

IFMN:o (—E)
I'tFM:mm THEM:m I'EFM:mmN7m
'EFM:mmNm (nh) 'EM:n (NE)

Major reference for this system (a.k.a. “BCD", Barendregt-Coppo-Dezani):

[Barendregt et al., 1983].

J. Rehof (TU Dortmund) KSOS SS 2015 17 / 18

Intersection type system \"

A good exposition of the following fundamental result (which goes back to around 1980)
can be found in [Ghilezan, 1996].

Lemma 5 (Subject expansion)

Suppose M —3 N by contracting the redex occurrence (Az.P)Q in M. IfT'F M : o
and @ is typable in the same context I', thenT F N : 0.

Theorem 6 (Fundamental theorem for A™)

A term M is typable in system X", if and only if, M is strongly normalizing.

Corollary 7 (Undecidability)

Typability in X" is undecidable.

J. Rehof (TU Dortmund) KSOS SS 2015 18 / 18

H Barendregt, H., Coppo, M., and Dezani-Ciancaglini, M. (1983).
A Filter Lambda Model and the Completeness of Type Assignment.
Journal of Symbolic Logic, 48(4):931-940.

[d Ghilezan, S. (1996).
Strong Normalization and Typability with Intersection Types.
Notre Dame Journal of Formal Logic, 37(1):44-52.

[Hindley, J. R. (2008).
Basic Simple Type Theory.
Cambridge Tracts in Theoretical Computer Science, vol. 42.

J. Rehof (TU Dortmund) KSOS SS 2015 18 / 18

